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Abstract 
The focus of this study was to develop an image-based algorithm for the catheter 

detection and segmentation in volumetric ultrasound. Nowadays, echocardiography is one 
of the most common methods of cardiovascular diseases diagnostic and surgery. As an 
input data the algorithm uses epicardial full-volume 3D echocardiography datasets. In total, 
9 datasets consisted of 15 three-dimensional timeframes were processed. Each 3D 
timeframe includes 208 slices with the size of 176*176. To correctly detect the catheter, the 
feature-based approach was applied to recognition the catheter within the 3D 
echocardiography datasets. MATLAB was used for all calculations as the main numerical 
computing environment. Before the main part of the algorithm, we performed pre-
processing of the data. The pre-processing workflow comprises imposing a restriction on 
the area of the region for noise reduction, automatic Otsu’s thresholding and morphological 
operations.  

The proposed algorithm based on gray-level co-occurrence matrix (GLCM) was applied 
as a feature extraction technique. Once the GLCM was computed, we obtained correlation, 
contrast, homogeneity and energy features. Then we applied feature thresholds to the 
catheter detection. These thresholds were obtained using Support Vector Machine (SVM) 
with the linear kernel function and standardization the predictor data. The average 
segmentation and recognition accuracies of the algorithm equal 94.16% and 87.2% 
respectively. The processing time for one 2D slice and one 3D dataset are equal to 9±0.2 
milliseconds and 1.96±0.045 seconds, respectively. Though the algorithm is not time-
consuming for 2D mode, it is still complicated to apply it to 3D real-time visualization. 

Keywords: catheter detection, catheter segmentation, texture analysis, GLCM, SVM, 
ultrasound. 

 

1. Introduction 
Image processing and visualization tools 

are an indispensable part during performing 
microsurgical endovascular procedures with 
catheters on the heart. Existing visualization 
and image processing methods limit the 
range of complex manipulations performed 
on the beating heart. In its turn, classical 
visualization techniques (echocardiography, 
fluoroscopy, and angiography) [1–3] possess 

several crucial disadvantages such as 
insufficient quality of the output data, high 
level of noise and limited scope (field of 
view). These drawbacks significantly reduce 
the range of possible transcatheter 
procedures on the heart by means of 
endovascular technology and also hinder the 
development of this area. Two-dimensional 
echocardiography (EchoCG) does not allow 
adequately displaying the spatial position of 
the medical instrument (catheter) and 
visualize the area of interest. Additionally, 
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3D EchoCG displays a limited area with a 
significant level of digital noise, shadows, 
and artifacts. Thus, for today, a wide range of 
cardiosurgical operations are performed only 
on an open heart using artificial circulation 
[4,5]. Such methods of pathology correction 
have a number of shortcomings associated 
with severe postoperative complications and 
long-term rehabilitation, which is an 
important problem in cardiology. The 
availability of new methods of visualization, 
image processing and delivering catheter 
devices allows performing a number of 
interventions on the working heart, 
including stenting of vessels, radiofrequency 
ablation in cases of cardiac arrhythmias, 
closing of atrial and interventricular septal 
defects. Currently, there are a few numbers 
of research studies that are devoted to the 
application of recognition and tracking of 
medical devices. 

Nowadays biplane fluoroscopy that uses 
X-ray image intensifier is one of the most 
frequently used methods of visualization (up 
to 60%) [6]. In the studies of Matthias 
Hoffman, a semi-automatic reconstruction of 
the catheter is performed based on two 
projections [7,8]. The authors minimized the 
interaction with the user in their algorithm; 
nevertheless, recognition still requires the 
assigning of at least one point belonging to 
the catheter area. The accuracy of the 
methods is at a high level, but the total 
processing time takes about 8 seconds, 
which confirms the impossibility of using 
this method in real time. Moreover, the X-
ray based methods are not applicable for 
heart imaging, because they cannot provide 
soft tissue information.  

Research study on the skeletonization and 
visualization of the catheter in the three-
dimensional space of the vasculature were 
carried out by Baert Shirley, Van de Kraats 
Everine and others [9]. Another research 
devoted to the detection and tracking of 
different types of catheters was performed by 
Ying Liang Ma et al. [10]. In their study, 
scientists did not reconstruct the catheter 
but only used the tracking algorithm for 
three different types of catheters.  

In the other work, P. Ambrosini et al. 
proposed a method, based on a hidden 

Markov model, for 3D catheter tip tracking 
with 2D X-ray catheterization sequence and 
3D rotational angiography [11]. But in the 
research intraoperative images are enhanced 
using contrast agent for visualizing the 
vasculature.  

In paper [12] the authors describe a 
method based on registration X-rays and 
echocardiography. The presented algorithm 
had an average error of less than 1 mm and 
the speed could reach 1.5 fps. However, the 
combination of X-rays and ultrasound 
signals impose restrictions on the structure 
of input data end equipment. In this regard, 
the main scientific direction of this study is 
the research and development of the 
algorithm for intraoperative imaging and 
catheter visualization using the 3D 
echocardiography data.  

2. Materials  

2.1 Data description 
Epicardial full-volume 3D 

echocardiography datasets were acquired on 
the porcine heart using an X7-2t transducer 
on a Philips iE33 machine and PMS5.1 
Ultrasound software (Philips Healthcare, 
Andover MA). During the data acquisition 
step, 9 datasets were acquired. Each dataset 
consists of 15-17 timeframes and each of 
them includes 208 slices of 176*176-pixel 
size. Example of the data acquiring using 
Philips iE33 echocardiographer is shown in 
Fig. 1. 

The experimental protocols were 
approved by the Boston Children’s Hospital 
Institutional Animal Care and Use 
Committee (IACUC).  

 The datasets were processed offline on 
the computer equipped with Intel Core i7-
4790K 4.0 GHz CPU and NVIDIA GeForce 
960 GT using MATLAB (MathWorks, Natick 
MA). 

 



 
Fig. 1. An exemplary slice of the data. 

 

2.2 Methods 
2.2.1 Workflow 
To efficiently recognize and segment the 

catheter we used sequential steps with 
particular options and setting for each of 
them. Features selected for the algorithm are 
the most relevant properties that can be used 
for the catheter recognition. The main steps 
of the algorithm are presented as cascade-
based workflow shown in Fig. 2. 

 

 
Fig. 2. Basic steps for recognition and 

segmentation algorithm of the catheter: 
green blocks – data acquisition and feature 

studying, blue blocks – coarse detection and 
segmentation, orange blocks – delicate 

detection and segmentation, red block – 
smoothed 3D reconstruction. 

 
To gather the whole data, we used real-

time streaming of Philips iE33 machine. 
After getting all the medical data, we transfer 
it from DICOM Philips format into Nearly 
Raw Raster Data (NRRD) format. 

 

2.2.2 Morphology 
In regard to the initial processing 

methods, we applied automatic Otsu’s 
thresholding for binarization an image [13] 
and morphological closing based on 
morphological reconstruction for filling the 

holes [14]. The disk-shaped element was 
used as the main structuring element for this 
morphological procedure. Using a disk 
structuring element allows preserving the 
circular nature of the object. In our case, the 
catheter has the circular or elliptical shape 
depending on its position and the position of 
the ultrasound transducer.  

Small artifacts and noise emissions were 
removed by the imposing area restrictions. 
The output of the previous steps was a set of 
labeled regions including the region of 
interest (catheter). However, among these 
regions, there are false ones (see Fig. 4b).  

 

2.2.3 Feature selection 
We put forward a hypothesis that, by 

imposing different feature constraints, the 
catheter can be accurately found in the 
image. We selected several high-impact 
features such as ROI area, mean and 
standard deviation of intensity within a 
region and four textural features such as 
contrast, correlation, energy, and 
homogeneity. In order to limit the number of 
obtained regions, we calculated values of all 
features and entered limits for them, which 
are equal to ranges, corresponding to the 
region of the catheter. Textural features were 
calculated using gray-level co-occurrence 
matrix (GLCM) [15,16]. The GLCM for an 
exemplary slice is shown in Fig. 3.   

 

Fig. 3. GLCM for an exemplary slice. 
 
2.2.4 GLCM 
In order to compute textural features, 

GLCM should be normalized, so that the sum 
of its elements is equal to 1. Each element 
(r,c) in the normalized GLCM is the joint 
probability occurrence of pixel pairs with a 
defined spatial relationship having gray level 
values r and c in the image. 

Statistical properties of the image derived 
from GLCM are following: 

1

• Gathering and 
reading the data

2

• Catheter feature 
limits estimation

3

• Binarization
(thresholding)

4

• Morphological 
closing 

5

• Region labeling & 
enumeration

6

• Excess blobs 
elimination

7

• Big blobs 
elimination

8

• Intensity feature 
extraction

9

• Intensity-based 
detection 

10

• Texture analysis

11

• Texture detection

12

• Reconstruction



Contrast is a measure of the intensity 
variance or inertia between a pixel and its 
neighbor over the whole image. Contrast 
range for GLCMs (255*255 size) is from 0 to 
64516. For the constant image, contrast is 
equal to 0. Contrast is calculated as follows: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ |𝑖 − 𝑗|2𝑝(𝑖, 𝑗)

𝑁−1

𝑖,𝑗=0

 

1. Correlation is a measure of how correlated a 
pixel is to its neighbor over the whole image. 
Correlation varies from 1 to -1. Perfectly 
positively or negatively correlated image 
corresponds to 1 or -1 for correlation. Correlation 
is calculated as follows: 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑝(𝑖, 𝑗)

𝜎𝑖𝜎𝑗

𝑁−1

𝑖,𝑗=0

 

2. Energy is the sum of squared elements in 
the GLCM and it ranges from 0 to 1. Energy 
is calculated as follows:    

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑝(𝑖, 𝑗)2
𝑁−1

𝑖,𝑗=0

 

3. Homogeneity is a value that measures the 
closeness of the distribution of elements in 
the GLCM to the GLCM diagonal. 

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

𝑁−1

𝑖,𝑗=0

 

where:  
p(i, j) is an element (i, j) of the normalized 
symmetrical GLCM;  
N is the number of gray levels;  
µ is the GLCM mean (being an estimate of 
the intensity of all pixels in the relationships 
that contributed to the GLCM), calculated as 
follows: 

𝜇 = ∑ 𝑖𝑝(𝑖, 𝑗)

𝑁−1

𝑖,𝑗=0

 

σ is the variance of intensities of all reference 
pixels in the relationships that contributed to 
the GLCM, calculated as: 

𝜎 = ∑ 𝑝(𝑖, 𝑗)(𝑖 − 𝜇)2
𝑁−1

𝑖,𝑗=0

 

Most regions similar to the region of the 
catheter were excluded after application 

delicate detection based on texture features 
and Gray-Level Co-Occurrence Matrix. It 
should also be noted, that threshold levels 
for textural and intensity features were 
empirically found. 

The GLCM is a widely used technique, 
which is applied not only to the feature 
extraction but also for segmentation tasks. 
For instance, A. Rampun, H. Strange et al. 
proposed a segmentation method based on 
consideration each feature at two different 
configurations in the paper [17]. Mahesh B. 
Nagarajan, Markus B. Huber et al. used the 
GLCM for the lesion segmentation in the 
work [18].  

 

2.2.5 Image processing 
After acquiring the data and figuring out 

the catheter feature distribution, each slice is 
processed by the automatic thresholding 
algorithm. The result of the application of 
Otsu’s thresholding method is shown in Fig. 
4a.  

The morphological closing follows the 
thresholding step and performs a flood-fill 
operation on background pixels (see Fig. 4b). 
This operation fills the holes and determines 
the connected area. At this step, we used 4-
connected neighborhoods connectivity. As it 
can be seen in Fig. 4b, the number of objects 
of these steps is 11, where the catheter is 
represented by the region 6. 

 

  
a) b) 

Fig. 4. Automatic thresholding (a) and flood-
fill segmentation (b). 

 
As we described above, one of the 

workflow steps is an intermediate procedure 
connected with excess blobs elimination. 
This step assumes that the region of the 
catheter cannot be smaller than 5 pixels even 
for an edged slice of the distal end of the 
catheter. This is why regions 2 and 9 
reflected in Fig. 4b and shown in Fig. 5a in 



red circles were removed. The output of this 
step is a black and white (BW) mask with 9 
objects. 

 

  
a) b) 

Fig. 5. Excess blobs elimination: colorized 
input (a) and BW output (b). 

 
As illustrated in Fig. 6 most regions are 

removed after step 7 of the workflow but 
there are 4 excess regions that meet the area 
criteria as well as the region of the catheter. 

 
Fig. 6. Exclusion of the regions by area 

criteria. 
 

After finishing the coarse detection and 
segmentation, we apply intensity analysis 
with further segmentation using the features. 
The first two features related to this step are 
the intensity mean and standard deviation of 
a certain region. To detect the region of the 
catheter, the mean and standard deviation 
were computed for each region on each slice 
of the dataset. The distribution of these two 
features for the current slice is presented in 
Fig. 7, where the average intensity and 
standard deviation for the catheter are 112 
and 27, respectively. In its turn, several 
regions significantly differ from the region of 
the catheter, for example, region 1 and 4. In 
this regard, the obvious difference between 
the two classes (tissue and catheter) allowed 
linear SVM to set a threshold value for the 
features. 

 

Fig. 7. Intensity analysis for the regions. 
 
Values of these features for each region 

are compared to limits and are defined 
whether they meet the criteria or not. Fig. 8 
displays how these two features excluded one 
of the redundant regions. 

  
a) b) 

Fig. 8. Intensity analysis (a) with the 
following intensity-based detection using 

mean and standard deviation (b). 
 
The most precise step of the workflow is 

texture analysis with the GLCM. During this 
stage, four parameters such as the contrast, 
homogeneity, correlation, and energy are 
computed using GLCMs of each region.  

Four GLCMs for remained regions are 
shown in Fig. 9. Afterward, textural features 
were compared with established limits. 
Computed feature values of the texture 
analysis shown below in Fig. 10 were 
compared to the reference ones shown in 
Fig. 12. 
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Region 3 (catheter) 
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Fig. 9. Visual representation of GLCMs for 
remained regions. 

 

The catheter (region 3) and two other 
regions (region 1 and 2) in Fig. 10 have 
sufficient uniformity, as indicated by the 
arrangement of the matrix elements on the 
central diagonal. In turn, the region 4 has 
internal brightness differences. Since the 
GLCM uniformity of the region cannot be 
used as a feature of the catheter. The 
correlation, contrast, homogeneity, and 
energy were computed based on the obtained 
data. Further processing was performed on 
the obtained features.  

 

  
 

a) b) 

    
c) d) 

Fig. 10. Texture analysis: contrast (a), 
correlation (b), energy (c) and 

homogeneity (d). 
 

The final procedure of the 2D stage found 
the desired ROI with certain features (see 
Fig. 11). As it can be seen in Fig. 11b, this step 
leaves only the region of the catheter and 
gives the output as a black and white mask 
which can be used for further 3D 
reconstruction. 

 

  
a) b) 

Fig. 11. A detected catheter (a) and its 
BW mask (b). 

 

2.2.6 Limitations 
In order to eliminate blobs and leave the 

desired region of interest (ROI), we imposed 
general area limitations performed in the 
beginning: the lowest and highest area limits 
are 5 and 200 pixels respectively. We also 
performed an estimation of feature limits 
within one timeframe consisting of 208 
slices in order to find out the distribution of 
lowest and highest values for further 
restriction. This number of slices is sufficient 
to figure out the feature distribution because 
all settings for the data acquisition were not 
changed within the study. In this regard, 
other 3D timeframes have relatively the 
same feature distribution. Feature limits 
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obtained with 208 slices are shown in Fig. 
12. 

One of the main limitations of the 
algorithm is area restriction. Many excess 
binary large objects (blobs) frequently 
remain after application thresholding. 

 

 

 
Fig. 12. Feature limits for the catheter. 

 

3. Results 

3.1 Accuracy  
To assess the accuracy of the algorithm, 

we compared two diameters: the reference 
diameter and the diameter received after the 
application of the proposed algorithm. The 
catheter used for performing medical 
procedures in our case had a diameter equal 
to 7 Fr (French Gauge) or 2.333 mm. 

The diameter of the catheter was 
estimated using 2 ways: manual and 
automatic. For manual measurements, we 
used the short-axis view. Using this view 
gives a bigger sample of measurements what 
makes calculations of the diameter with 
higher precision. However, these 
measurements can be taken in the long-axis 
view but with lower accuracy. To assess the 
accuracy, the diameter was measured in 504 
slices. To gauge the diameter automatically, 
we described the region of the catheter by 
the corresponding ellipse that has the same 
second moment (see Fig. 13). 

   
Fig. 13. Zoomed mask of the catheter region 

with an ellipse replacement. 
 

As it can be seen in 
Table 1, the average diameter of the 

catheter after executing all processing steps 
equals to 2.47 mm what is 5.84% more than 
the reference diameter. However, such error 
does not have a strong influence on the 
visualization because 0.14 mm error lets a 
surgeon perform medical procedures without 
any confusions. It was observed that Otsu’s 
thresholding method incrassates the region 
of the catheter by 5-10% this is why the error 
is increased as well. To decrease the error, 
modified Otsu’s method and/or more 
delicate threshold level should be used. It’s 
important to note that accuracy 
measurement performed by the algorithm 
took into account position and inclination of 
the catheter, which allowed better 
orientation along the correct axes. 
 
Table 1. Comparison of the reference 
catheter diameter with the diameter 
obtained by the proposed algorithm. 

 
Reference 
diameter 

Diameter measured 
by the algorithm 

Mean, mm 2.33 2.47 
Std, mm 0 0.16 
Error, % 0 5.84 
 

A reduction tendency of a number of 
regions over different steps of the proposed 
algorithm is shown in Table 2. According to 
the results, there is a trend of decreasing the 
number of regions. The intensity-based and 
area-based features reduced the number of 
regions approximately by half. In turn, 
texture feature based on the GLCM allowed 
excluding the false regions more accurately. 
Speaking of recognition accuracy and several 
mathematical statistics, they are shown in 
Table 3. The average recognition accuracy of 
the catheter is 87.2%. The confidence level 
for the sample including 504 cases equals 
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2.5%. The latter means that the recognition 
accuracy varies from 84.6% to 89.7% with a 
5% significance level. 

 
Table 2. A number of regions within different 
steps of the proposed algorithm. 

Number of regions Mean±STD 
Initial number of regions 10.1±3.4 
Number of false regions 9.1±3.4 

Number of regions after area 
restriction (low limit) 

8.9±3.2 

Number of regions after area 
restriction (high limit) 

6.7±2.9 

Number of regions after 
intensity restriction 

5.5±2.5 

Number of regions after texture 
restriction 

1.2±0.3 

 
Table 3. Mathematical statistics and 
recognition accuracy. 

Parameter Value 
Significance level 0.05 

Size 504 
Confidence interval 2.5% 

Recognition accuracy 87.2% 

 

3.2 Processing time 
The desktop computer with equipment 

described in section 2.1 was used for time 
assessment. We did not isolate the testing 
process from the influence of other processes 
and did not allocate a separate thread. To 
find the mean and standard deviation of 
processing time we performed 150-iteration 
assessment. Processing time for one 
timeframe is 1.96±0.045 seconds. Each 
timeframe includes 208 slices what means 
that average processing time for 176*176 
slice is 9±0.2 milliseconds.   

4. Conclusion 
In this research study, we developed an 

image-based algorithm detecting and 
tracking the distal end of the catheter. To 
correctly detect and segment the catheter, we 
applied a feature-based approach that can 
recognize the catheter along the whole 3D 
dataset. However, the algorithm works in 
pseudo-3D what means that it processes the 
data in the slice-by-slice mode. It worth 
noticing that the accuracy of the algorithm is 
at the relatively high level and equal to 
94.16%. This means that the algorithm error 
is 140 micrometers. However, this error is 

acceptable for performing minimally-
invasive cardiac surgery. Another vital 
feature of the algorithm is its processing 
time. Average processing time for one 3D 
timeframe is equal to 1.96 seconds and 
approximately 9 milliseconds per slice. 
Though the algorithm is not time-
consuming, it is still complicated to apply it 
to real-time surgery because of the huge 
amount of data obtained by 
echocardiography. 
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